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Abstract

This thesis presents the formal background for a mathematical model for level-clocked
circuitry, in which latches are controlled by the levels (high or low) of clock signals rather
than transitions (edges) of the clocks. Such level-clocked circuits are frequently used in
MOS VLSI design. Our model maps continuous data-domains, such as voltage, into
discrete, or digital, data domains, while retaining a continuous notion of time. A level-
clocked circuit is represented as a graph G = (,E), where V consists of digital
components--latches and functional elements-and E represents inter-component
connections 
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The majority of this thesis concentrates on developing lemmas d theorems that c~o serve
as a set of "axioms" when analyzing algorithms based on the m. 1. Key axioms ificlude
the fact that circuits in our model generate only well defined digi signals, agd the fact
that components in our model support and accurately handle the ndefined values that
electrical signals must take on when they make a transition between valid logic levels. In
order to facilitate proofs for circuit properties, the class of computational predicates is
defined. A circuit property can be proved by simply casting the property as a
computational predicate.
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signals rather than transiticas (edges) of the clocks. Such level-clocked circuits are
frequently used in MOS VLSI design. Our model maps continuous data-domains,
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notion of time. A level-clocked circuit is represented as a graph G = (V, E), where V
consists of digital components-latches and functional elements-and E represents
inter-component connections.

The majority of this thesis concentrates on developing lemmas and theorems that
can serve as a set of "axioms" when analyzing algorithms based on the model. Key
axioms include the fact that circuits in our model generate only well defined digital
signals, and the fact that components in our model support and accurately handle the
"undefined" values that electrical signals must take on when they make a transition
between valid logic levels. In order to facilitate proofs for circuit properties, the class
of computational predicates is defined. A circuit property can be proved by simply
casting the property as a computational predicate.
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Figure 1: Shown is a transistor-level circuit diagram for a simple cMOS level-clocked circuit. Labels
on electrical nodes indicate the time dependent voltages computed for them by the device-level simulator
SPICE.

1 Introduction

The MOS/VLSI technology has popularized a methodology of clocking based on level-
clocked latches instead of the more traditional edge-triggered latches used, for example, in
TTL design. The popularity of level-clocking arises from the simplicity with which a level-
clocked latch can be implemented in MOS technologies: a single transistor can suffice.
Unfortunately, the high device densities being achieved with modern VLSI fabrication
processes preclude the possibility of performing detailed circuit simulations of complete
level-clocked circuit systems. Consequently, the design and analysis of level-clocked circuit
systems require models that can sacrifice detail, while maintaining accuracy.

The lowest level at which level-clocked circuits are modeled is commonly referred to as
the device level. At this level, small cir -iits consisting of at most a few dozen electrical
devices are simulated in great detail, accords- to empirically verified models for individual
device behavior. In general, signals being passed between devices are time-dependent
voltages that can take on values in some continuous range. Thus, within the limitations of
floating-point number representation, device-level models treat signals as mappings from
continuous time to some continuous data domain, generally voltage. Figure 1 shows the
output of the device-level simulator SPICE [16], for a simple cMOS level-clocked circuit.

The next two levels at which level-clocked circuits are commonly modeled are referred
to as the switch level and block level. At these levels, large circuits of perhaps thousands of
individual devices are simulated in an attempt to uncover difficulties with circuit function-
ality and data-movement coordination. Like device-level models, signals are generally still
mappings from continuous time to some data domain. At these levels of representation,
however, the data domains of signals are abstracted to be discrete, or digital, rather than
continuous. Figure 2 depicts a block level representation of the level-clocked circuit from
figure 1.

The reason for the abstraction to digital data domains is two fold. First, the abstrac-
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Figure 2: Shown is a block level representation of the level-clocked circuit from figure 1, along with its
corresponding digital signals. Note that two of the transistors from figure 1 have been grouped into a
single "block" of combinational logic, represented as a logical inverter, and the remaining transistor has
been replaced with an abstract level-clocked latch.

tion allows the use of less detailed, and therefore less computationally intensive, device
models, and consequently facilitates the simulation of circuits that contain large numbers
of electrical devices. Second, the abstraction is a natural one, since the vast majority of
level-clocked circuits are used in digital computers, where various voltage ranges are by
convention interpreted as a logical "1" or "0."

Unfortunately, the abstraction to digital signals can be problematic, since we wish
switch and block level models to accurately reflect the operation of a large level-clocked
circuit. In this context, it is not enough for a model to map an electrical signal into
a digital data-domain in a reasonable fashion. A model must also be able to determine
whether the presumably unmodeled device-level behavior of the level-clocked circuit is such
that a particular mapping would be appropriate.

Traditionally, the models used at the block and switch levels have focused more on
handling the parameters of a general engineering situation, and less on formal properties.
Consequently, the problem of confirming the accuracy of the mapping of electrical signals
into the digital data domain has generally either been deferred to the electrical engineer, or
ignored. In addition, the relative de-emphasis on formal properties has resulted in models
and algorithms that lack the kinds of theoretically rigorous notions, algebras and bounds
that have been developed for circuits utilizing edge-triggered latches[9, 11].

This thesis presents the formal background for a model for level-clocked circuitry that
has been formulated explicitly to support mathematically precise manipulation, while main-
taining the ability to accurately map electrical signals. Features of the model include the
ability to support and handle the "undefined" values that electrical signals take on when
they change between valid logic levels, and the ability to support formal proof techniques,
such as induction. We show that circuits in the model always generate signals that have
well defined values, and present several lemmas that formally characterize the behavior of
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individual circuit components. In addition, we define a large class of circuit properties, the
computational predicates, and in conjunction develop the mechanism of computational or-
dering, which conveniently integrates the limit arguments used to analyze continuous-time
systems into a more easily manipulated inductive framework.

The remainder of this thesis is organized as follows. Section 2 defines the basic concepts
of digital signals and models. Section 3 presents our models for individual circuit compo-
nents, and proves the ability of individual components to accurately operate on digital
signals. Section 4 defines how circuit components are hooked up into complete circuits,
and presents our representation of a computation on a circuit. Section 5 develops the
mechanism of computational ordering, and defines the class of computational predicates.
Section 6 then uses computational predicates to prove that circuits in the model possess
important basic properties, such as deterministic operation. Finally, section 7 finishes with
some concluding remarks that do not belong in the introduction.

2 Digital Signals and Models

In this section we define digital signals and their correspondence to the electrical signals
that they are used to represent. Mathematical definitions are given along with intuitive
descriptions when appropriate. In addition, we introduce the concept of a digital model.

A tacit assumption throughout this thesis is that we wish to accurately represent the
electrical signals found in real MOS circuits, without resorting to the powerful, but compu-
tationally intensive, device-level simulations of systems such as SPICE. Electrical signals
generally are time-dependent electrical voltages or currents that vary over some continuous
range of values. They are determined either empirically, or with complex nonlinear device
models. The assumption throughout this thesis is that electrical signals are represented by
time dependent signals that only vary over some digital data-domain, which contains only
a countable number of values. A digital model is a model that only handles signals with
digital data domains.

When signals with digital data domains are used to represent electrical signals, there
must exist some correspondence of values in the data domain of the electrical signals, to
values in the digital data domain. Electrical signals in MOS circuits, for example, might
use voltages greater than or equal to 3.5 volts, and less than or equal to 1.5 volts to
represent binary 1 and 0 respectively. The correspondence of values in the data domain
of the electrical signals to values in the digital data domain is the elementary mapping for
the data domain of the electrical signals.

Since digital models are presumably less powerful than device-level models, we expect
that there are times when a digital model is not powerful enough to accurately perform
the elementary mapping. Such times can be grouped into two broad categories. The first
category consists of times when the elementary mapping does not specify a value in the
digital data-domain, that for the value of an electrical signal. At such times the value of a
digital signal is undeterminable, because the value that corresponds to the electrical signal
is undefined in the digital data domain. The second category consists of times when the
elementary mapping does specify a value in the digital data domain, for the value of an
electrical signal, but the digital model does not incorporate sufficient detail to perform the
mapping. At such times, the value of a digital signal is undeterminable, because the correct
values are effectively underdefined by the digital model.
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Figure 3: Shown is the level-clocked circuit from figure 1, and its time dependent voltage waveforms.
Times that correspond to undefined values are shaded.

Undefined values are generally due to the fact that we are mapping the the value of
some continuous physical quantity into the discrete data domain of some digital signal.
For example, consider the previously stated voltage range elementary mapping for MOS
circuits. Since voltage is a continuous physical quantity, an electrical signal cannot change

*from 3.5 to 1.5 volts, without taking on every intermediate voltage. Times when the
electrical signal is at some intermediate voltage cannot be mapped to either I or 0, and
consequently correspond to a value that is undefined in the digital data-domain. Figure 3
shows the times that correspond to undefined values for the circuit from figure 1.

Underdefined values can be due to uncertainty inherent to the MOS circuits being
modeled. For example, it is often impossible to predict the exact time at which an electrical
signal would change value, since variations in circuit fabrication processing make it difficult
to predict the amount of time needed for a change in voltage to propagate from one piece of
circuitry to another. Consequently, a transition in the value of the electrical signal, implies
an underdefined interval during which an accurate representation of electrical signal in
a digital data domain is not possible. In general, this interval is made large enough to
encompass all times at which the transition might actually occur.

In general, however, underdefined values are due to the desire to avoid computing the
solutions to computation intensive problems. For example, in section 3, it will be assumed
that a change in the value of an input to a circuit component, forces the output of the
component to be considered underdefined. This constraint is excessive, since there are
circuits, such as a typical nMOS NOR gate, where inputs can sometimes change value
without affecting the value of the output. Unfortunately, the general problem of deter-

mining whether a circuit falls into this category is NP-complete [3], and consequently is
likely to be computationally intractable. Thus, while changing inputs do not actually imply
that the output of a circuit cannot be mapped into a digital data domain, the output isOeffectively underdefined, since modern computing machinery cannot compute the mapping
efficiently.
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In order to model underdefined and undefined values, we introduce into every digital
data-domain the special symbol I, which is specifically used to represent undefined and
underdefined values. The explicit representation of underdefined and undefined values is
important, since, as we shall see in section 3, underdefined and undefined values have a
significant impact on how circuits behave.

A digital signal is essentially a mapping from time to some discrete, or digital, data
domain V, typically {0, 1}, where D does not contain the reserved symbol L. Elements of
D are valid digital values, while the symbol 2. is the invalid digital value that we use to
represent underdefined and undefined values. Each element of V is assumed to correspond
to some subset of the continuous data domain for the modeled electrical signal, just as
"1" and "V" correspond to voltage ranges in the description of figure 3. We also assume,
however, that as the value of an electrical signal changes from a subset that corresponds
to one valid value, to a subset that corresponds to another, there exists an interval of time
during which its value does not correspond to any element of V. During such intervals,
the value of a digital signal is the invalid value 1. The following mathematical definition
formalizes this characterization.

Definition. A digital signal over a discrete data-domain D is a mapping s

JR U {-oo} --+ U {.}, that satisfies the following two properties.

" For each z E , the values t, such that s(t) = x, form a set STABLE(s, x) of
nonoverlapping closed intervals.

" For each x E V, the set STABLE(s, x) is locally finite, that is, for all t1 , t2 E IR,
the number of intervals in STABLE(s, z) nC [t, t2] is finite.

Observe, that when an digital signal changes from one valid value to another, the first
property implies that there exists a well defined last moment in time when it takes on the
first value, a well defined first moment in time when it takes on the second value, and an
open interval of time between them where it takes on the invalid value I. In addition,
the second property excludes any signal whose value changes infinitely often within a
finite period of time, thus guaranteeing that there exists an order-preserving mapping from
stable intervals to the integers. The order preserving mapping to the integers is of great
significance in section 5, where we perform inductions on digital signals. Finally, while we
expect the data domain for signals to be circuit dependent, for convenience we generally
assume that all signals in a circuit share a common data domain V.

We say a digital signal is stable over an interval of time if it assumes a constant valid
value over the interval. By definition, a stable signal is constant. A constant signal need
not be stable, however, since a signal could be constant with the invalid value 1. We
specifically use the term constant to indicate that a signal that could also be constant with
value L. Observe, that by definition, a digital signal is stable over any interval that is an
element of STABLE(s, x), for some z E V.

3 Ideal Circuit Components

This section presents our model for individual circuit components. We begin with an
overview of what circuit components are, and how our model represents circuit component
behavior. Then for each type of circuit component we present an intuitive description of
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the behavior of the component, describe how underdefined and undefined values affect this
behavior and present our mathematical model for the component. In addition, several
basic lemmas are presented. These lemmas serve as a basic set of "axioms" for subsequent
theorems, and their proofs provide a valuable opportunity to become familiar with different
aspects of our models for circuit components.

In the broadest sense, a circuit component is anything that can be used as part of a
complete circuit. At the device level, common components are wires, transistors, resistors
and capacitors. At the block level, it is common to encounter more abstract components
such as logic gates and ALUs. In general, the behavior of a circuit component at the block
level is defined by the relationship between the inputs and output of the component, and
not by the physical objects with which the component is realized.

Our model groups circuit components into two basic categories. The first category
includes the latches that control the movement of data within a circuit. The behavior of
latches is carefully represented in our model. The second category includes all components
that are not latches. This category includes everything from device-level components such
as transistors, to block-level components such as logic gates. Components in this category
are called functional elements. Since the behavior of functional elements can range between
the extremely simple and the very complex, our model represents their behavior in a generic
fashion.

Latches are placed in their own category for two reasons. First, since latches control data
movement within a circuit, they are the components of primary concern when performing
circuit verification operations, such as timing-analysis [2, 4, 5, 7, 12, 15]. Second, while
most types of functional elements, such as transistors or logic gates, are grouped into

* larger components at higher levels of abstraction, latches often remain atomic and exhibit
essentially the same behavior. Consequently, latches enjoy the unique position of being
considered important fundamental components at almost all levels of circuit modeling.

Our model represents circuit components with digital circuit components. An digital
circuit component is an abstract object that has some number k of digital input-signals
X1 , Z2,..., xk, a single digital output-signal y, and a constraint

LEGAL(y, Z, Z2 , . .. , X, t)

that if satisfied at time t indicates, that the input signals and the output signal are consis-
tent with the behavior of the component. Observe that since arbitrary digital signals can
be used as the inputs and outputs of digital components, digital components do not gen-
erate outputs in the traditional sense. In general we assume that input and output signals
are given and specified over all time. Under this assumption, the issue is not "what" the
value of a particular digital signal is, but rather whether a set of digital signals satisfies
the constraint LEGAL when its elements are used as the input and output signals of some
digital component.

We separately examine the digital components used to model functional elements and
latches in the following two subsections. Definitions of the LEGAL constraints are given,
along with intuitive descriptions where appropriate.
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Figure 4: A digital functional element has some finite number k of digital input signals z1 thru zi, a
single digital output signal V, an associated k-input function f, and a propagation delay d. When an
input changes, the output must immediately be .I. and cannot be a valid value until a time equal to the
propagation delay d after the change in the input.

3.1 Functional Elements

At an intuitive level, a functional element is a component whose output signal is some
function f of its input signals. In addition, a functional element has associated with it
a "settling" time, or propagation delay d, that indicates the amount of time required for
the output to assume its correct value after an input changes. This propagation delay in
general varies with the particular input involved, and with the specific value that the input
changed to or from.

Underdefined and undefined inputs to functional elements represent special difficulties,
due to the wide variety of circuit components that get grouped as functional elements.
Intuitively, an input to a functional element being underdefined or undefined, should imply
that the output of the functional element is also. Similarly, the output of a functional ele-
ment should be underdefined or undefined for at least one propagation delay after a change
in the value of some input signal. As mentioned in section 2, however, there exist circuits
whose outputs can be well defined, even if one or more inputs are not. Unfortunately,
verifying that an arbitrary functional element falls into this category is likely to be too
computationally expensive to be practical.

We model functional elements with a digital component. A digital fnctional element
has some finite number k of digital input signals x, thru zk, a single digital output signal
y, an associated k-input function f, and a propagation delay d, as shown in figure 4. The
constraint LEGAL(y, z 1 ,9z2 ,... , Zk, t) for a functional element is satisfied at time t, if and
only if the signals y, Z1, X2,... , Xl satisfy the following equation:

'f(-T1(t),2(t),....., T(t)) if zi is stable for all i =,1,2,...,k€

y(t) - over the interval [t - d, t], (1)

otherwise.

There are three features of equation I that should be noted. First, if an input signal changes
value and the output signal is to satisfy LEGAL, the output signal must immediately be
I and cannot be a valid value until a time equal to the propagation delay d after the
change in the input. Second, if any input signal is . at time t, by definition it is not
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Figure 5: Shown is a simple circuit that implements a level-clocked latch. The latch has input signal z,
output signal y and clock signal 0. When 0 is high, y follows z. When 0 is low, y holds the value it had
when 0 was most recently high.

stable at time t, and thus LEGAL constrains the output signal to be I. Observe that these
features are equivalent to the previously described intuitive notions of underdefined and
undefined values. Without these features, our model would be prone to computational
intractability difficulties. The third feature to note is that digital functional elements are

*characterized by only a single propagation delay d. The fact that d does not vary over the
different inputs is simply for convenience. The fact that d does not vary over the different
values for inputs is significant, since this type of propagation delay would also introduce
computational intractability problems.

Digital functional elements can be used to represent more general circuit components,
much as ideal electrical components are used to model real physical devices. For example,
a functional element with multiple outputs can be represented with several one-output
digital functional elements. As another example, a functional element whose propagation
delay varies with the input signal can be represented with a zero-delay functional element,
each of whose input signals is the output signal of a functional element that computes the
identity function and whose propagation delay is the input-to-output propagation delay of
the original functional element.

3.2 Level-Clocked Latches

Level-clocked latches are latches that are controlled by the level (high or low) of a clock
signal rather than a transition (edge) of the clock. Latches are three-terminal components
that are used to store and propagate data. A latch takes a single input signal and a single
clock signal, and produces a single output signal. A level-clocked latch has the following
general behavior. While the clock for a level-clocked latch is high, the output of the latch
is equal to its input. When the clock changes to low, the latch stores the value of its input
and outputs this value until the the clock changes back to high. Figure 5 shows a simple
implementation for a level-clocked latch, along with an illustrative set of input/output
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signals. Such level-clocked latches are frequently used in MOS VLSI design.
Th,; implications of underdefined and undefined values on the input signal of a level-

clocked latch are fairly straight-forward. If the clock input of the latch is high, an undefined
or underdefined value on the input signal implies an undefined or underdefined value on the
output signal, since the input and output are equal. If the clock input is low, an undefined
or underdefined value on the input signal implies nothing about the value on the output,
since the latch is outputting the value stored from the last time the clock was high.

If our only concern were underdefined and undefined values on the input signal of a
level-clocked latch, then we could describe the behavior of a digital level-clocked latch with
an equation similar to the following:

z(t) if 0(t) = HIGH

SY(t) = ,.high) if 0(t) = Low and (2)

t1 -hi=h = sup {t' < t : 0(t') = HIGH}

where x, y and 0 are the respectively the input signal, output signal and clock signal of
the latch. Observe that no explicit reference to I needs to occur, since the only source of
I values is the input signal x.

Unfortunately, equation 2 does not consider the more complex implications of underde-
fined and undefined values on the clock signal. If the clock signal is underdefined, then we
do not know whether its value is high or low. Observe, however, that the output could be
independent of the clock, and therefore well defined even if the clock signal is underdefined.
Consider, for example, if the input signal held a constant value X for all time. Introducing
underdefined values into the clock signal would in general have no effect on the output
signal. To see this, consider the possible values that the clock could have. If the clock were
high, the output would have value X. If the clock were low, the output would be the value
of the input at the last time the clock was high and, if we assume that the clock had been
high in the past, the output would again have value X. What is needed is a model similar
to equation 2. that retains a valid output value whenever the underdefined values of the
clock signal cannot affect the output value.

Properly addressing the implications of undefined clock signal values would require an
in-depth discussion of electrical device models and general VLSI design methodologies,
that is beyond the scope of this thesis. We make the broad assumption that underdefined
and undefined clock signal values can be considered to be equivalent. Any of the VLSI
references (2, 13J can be consulted if verification of this assumption is desired.

Formulating a model that properly handles underdefined clock signal values is not
straight forward, because of the many different cases that the model must address. For
example, it is not clear apriori that an underdefined clock value immediately after a high
clock value can be treated in the same way as an underdefined clock value immediately after
a low clock value. Similarly, there is the question of how to treat intervals of underdefined
values, where presumably the underdefined interval may represent a clock signal that in
reality changed from high to low multiple times during the interval. Under what conditions
can we guarantee that the output remains well defined regardless of what clock signal that
the underdefined value represents?

Fortunately, we can show that the following definition for a digital latch has the qualities
that we desire. A digital latch has a digital input signal x, a digital output signal y, and
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Figure 6: A digital latch has a single digital input signal z(t), a single digital output signal y(t), and an
associated digital clock signal 0.

a digital clock signal @, as shown in Figure 6. A digital clock signal, is a digital signal
with the data domain {HIGH, Low). The constraint LEGAL(y, z, 0, t) for a ideal latch is
satisfied at time t, if and only if the signals y, z and 0 satisfy the following equation:

X(t) if O(t) = HIGH

y(to,.valjd) if O(t) =1 and z(t') = y(t,-vajd)

for all t' E (t0- td, (3)

Y (t.-vaid) if 4(t) = Low and x(t') = Y(t-vlid)
for all t' E (t.-v ,id, to-i .aid),

.L otherwise,

where
t4jnvsjd = sup {t' 5 t : OW) =11

and
t,-vaid = sup {t' < t : 0(t') .JL and t" E (t',t] such that 0.(t") =J..

The time t.jafld is intuitively the most recent time that the value of 0 changed from I to
a valid value. Similarly, the time to-vid is intuitively the most recent time that 0 made a
transition from a valid value to L. Figure 7 shows a digital clock signal 0, and t.j.Ud and
t,,.jv for t = 25ns and t = 40ns.

Fu .he remainder of this thesis, we will be manipulating intervals that are frequently'
del,.:-. A by values such as t~ia,,.Hd and toffid. Unfortunately, since the supremum of a
set is not, necessarily a member of the set, use of a supremum to define the start or end of
an inIV:. ; - can lead to ambiguities with regard to whether the interval is open or closed.
l&ther Lian always explicitly enumerate the various possibilities of open, closed, half-open-
below and half-open-above, we adopt the convention of using the delimiters "K" and "I" to
indicate that the inclusion of the start or end point of an interval will vary from situation
to situation. For example, the expression (t,, te denotes the interval containing (t,, te)

and possibly t.. Except when noted otherwise, however, it is assumed that the inclusion
or exclusion of an end point is constant for any particular interval. Consequently, given an

interval (t,, tel, a subinterval such as Kit, t'] or a derived interval such as Kt, - x, t would
contain t. and t, - x, if and only if the original interval Kt,, t.j contained t,.

12
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Figure 7: Shown is a digital clock signal 0, and t#. jjd and t 'in.vd for t - 25ns and t = 40ns.

We can obtain an intuitive feel for equation 3, by assuming that LEGAL(y, X, 0, t) is
TRUE for all times t, and viewing y as a function of x and 0'. When 0 is HIGH, y follows
z and the latch behaves like a functional element computing the identity function. When
,0 is invalid, y follows z as long as z holds the value y had at the last transition of 0. If z
changes value while 4 is invalid, the value of y becomes invalid. Finally, when 0 is Low,
y effectively holds the value it had when 0 most recently changed value to Low. To see
this, recall that 4' must equal 1 before becoming Low and note that the conditions for 4
equal to Low and I are identical until the most recent transition of 4'.

The following five lemmas formally verify that equation 3 is such that digital latches
exhibit the types of behavior that we desire. Lemma 3.1 addresses the case where 0' has
value Low, while lemmas 3.2 and 3.3 examine the more involved case where 0 has value I.
The case where 4' has value HIGH is sufficiently simple not to warrant separate discussion.
Lemmas 3.4 and 3.5 prove a pair of lemmas that are presented here for convenience, but
are used in section 6.

Lemma 3.1 states that the output of a level-clocked latch must be constant when its
clock input has value Low. The lemma verifies the ability of a digital latch to hold state
information, and isolate its output signal from changes in its input signal. These abilities
are important, since level-clocked latches with Low clock inputs are in general used for
precisely these purposes. In addition, the lemma is needed for the proofs of lemmas 3.2
and 3.3.

Lemma 3.1 Let j, be the input signal, .. be the output signal, and 0 be the clock signal
of an ideal latch, where LEGAL(s8I, a,,, 4', T) for the latch is satisfied for all time T. If is
Low over the interval [t., tj, then a. must be constant over the interval [t., t.j.

Proof: If 0 is Low over the interval [t., tQ, equation 3 specifies that for any time t during

t, t, the value of .. is determined in one of two possible ways. Either the condition that
s9,,(t') - 5,(t0,.sud), for all t' E (t.jjd, t 4-i.Vd), is satisfied and s,,(t) = sv(t#.,&d) or it is
not satisfied and s,(t) =-.

Observe, however, that by definition t#.b and t#..nd must both be less than or equal
to t,, and moreover must both be constant for the entire interval [t., te). Consequently,
if the condition that s,(T) a,,(t#.v.ad) for all T E (t.vajd, t .jnv.iid) is satisfied at any
time during [t,, te then it must be satisfied for all time during Kt., tel. Similarly, if the

13



condition is not satisfied at some time during Kt., t1, then it cannot be satisfied at any
time during Kt., tj. In either case, s(t) must be constant, either with value 3,(t,.v."d) or
I, for all t E Ktotel. I

Lemmas 3.2 and 3.3 examine the behavior of a digital latch whose clock input is under-
defined and I. Our eventual goal is to verify that LEGAL constrains the output signal of
a latch to be underdefined and I at time t, if and only if the input signal or clock signal
of the latch is underdefined and I at some time t' that can make the value of the output
signal at time t ambiguous and thus underdefined.

Lemma 3.2 begins by demonstrating that the output signal of a latch cannot be valid
if underdefined clock signal values make the output signal value ambiguous. Proof of the
lemma is based on the observation that if 4 has underdefined values, then there exists
another clock signal 0', that represents the electrical signal that corresponds to 4 more
accurately. The lemma states that if LEGAL(s, sv,, 4, t) is satisfied, and sv(t) is a valid
value, then LEGAL(,q, s,,, 0', t) must also be satisfied, for any possible 0'.

Lemma 3.2 Let s,,, be the input signal, s,, be the output signal and @ be the clock signal
of an ideal latch, where LEGAL( ,, T,,) for the latch is satisfied for all time T. If
s,(t) 01, then for all digital clock signals 0', that equal 4 for all t' such that 0(t') is valid,
LEGAL(S,S, s,, 41', t) for the latch is satisfied.

Proof: If 41 equals HIGH at time t, the lemma holds trivially, since 0' must also be HIGH
at time t and therefore LEGAL(sv, svi, @, t) and LEGAL(,s,,,, 0', t) both require that s,,(t)
equals s,,. In addition, none of the clauses of equation 3 ever reference any signal values for
times not in the interval (t#.,Jid, t]. Consequently, we can assume without loss of generality
that 41 is not equal to HIGH at time t, &nd 4 and 0' are equal except over the interval
(t4-vlid, t4.invatid, where t,-tu,Jd is in the interval if tjiuvlid equals t.

To begin, consider the implications of s,(t) 1. If @ is not HIGH at time t, and
LEGAL(sJ, s,#, 4, t) is satisfied for all time, then sv(t) 0. implies that sv(t) equals sv (t,.vaid)
and s., equals S3(t*.v.id) over (to.,lid, t-in,,aid]. In addition, since for all T in (t,.mlid, t, .i.,,Ud)
0(T) equals I and T,-,ijd equals T, we can use equation 3 to conclude that s, also equals
s,(to.vid) over (t-valid, tO.invaidl . In addition, if 4 equals Low at t, we observe that for all
T in [toivaid, t], O"(T) equals Low, and the interval (TUjjd, T,.ifalid) is constant and equal
to (t.valid, t,nvalid), and consequently we can once again use equation 3 to conclude that s,,
also equals s(tO,aid) over [t,.t.,alid, t]. Combining the preceding arguments, we conclude
that if s (t) is not 1, then s,, and sv, must both be stable and equal to s,,(t#.,.id) over the
iLterval (t-vagjd, t].

The remainder of the proof is divided into two parts. The first part shows that the
lemma holds if 0' equals 4 except over some closed subinterval of (t.,id, t-nvalid) where
46' is either HIGH or Low over the entire subinterval. The second part uses the result of
the first part to show the lemma for any 0' that equals 0 except over (t,.,,jW, t ivd].

Assume that 0' equals 0 except over some closed subinterval of (t ,&.jl, t..inv id), [t., tel,
where 4' is stable over the subinterval. If 4 is Low at time t, then 4' is also Low at time
t, and LEGAL(s., sv,, 4', t) is satisfied if s,,(t) equals s,(t,'.,Ud) and sv,(T) = s,,(t'.id) for
all T E (t,,.lid, t0,.i.,.Ud). Observe, however, that (to.-vd, t'.in,.Jud) must be a subinterval
of (t-valid, t-invalid), since t4'.vlid equals t. and to'-invalid equals t4invalid. Consequently, since
s, and s,,, must both be stable and equal to s,,(t0-,d) over the interval (revaid, t], we
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conclude that LEGAL(sv1, st,, 4', t) is satisfied. An identical argument applies when 4 is _L
at time t, and therefore we conclude that LEGAL(sv, s,,, 0', t) must be satisfied if 4)' equals
4), except over some closed subinterval of (t4.vaid, t.-4vmUdl, [t., tel, where 0' is stable over
the subinterval.

By repeating the preceding argument, we can conclude that the lemma holds for arbi-
trary closed interval differences between 0' and 6 during (t-d t.iaJUd). Consequently, all
that remains to be shown is that the lemma holds for any possible open interval differences
between 0' and 4), during (t#.v Ud, tO-invalidl.

Open interval differences between 0' and 4, during (t-,.Ud, t0iav.~jd), are in general not
permissible, since 0' would no longer be a digital clock signal. The exceptions are the two
intervals (t..d, t.] and (t., t4j4y.jjd), where t, and t. are in the interval (t#.,tid, t#.ivuiidj.
If 4' is stable with the appropriate values over these intervals, the effect would be to once
again make the interval (t. , t6,.i,Hdj a subinterval of (t.-Vatd, t -i4VJdj. As before,
however, since 9v and s,,, must both be stable and equal to s,(t#.bd) over the interval
(t4- 1]d,tj, we know that s, and 3, must both be stable and equal to s,,(t4.vaid) over the
interval (to,-vd, t], and therefore that LEGAL(Ss, ,, 0', t) must be satisfied. I

Unfortunately, lemma 3.2 only states that equation 3 does not wrongly require an output
signal to be valid. Consequently, it is of limited usefulness, since it would, for example,
trivially hold if LEGAL for a latch required that the output signal for the latch always be
1. Observe, however, that the converse of lemma 3.2 is not true, since an input signal
value of _L is another possible reason for the output signal of a latch to be invalid.

Lemma 3.3 is analogous to the converse of lemma 3.2, but takes into account the fact
that invalidity of the input signal can affect the output signal. Specifically, it states that if
the output signal of a latch is 1, then some ambiguity introduced by an underdefined clock
signal either itself introduces ambiguity about the value of the output signal, or allows
ambiguity about the value of the input signal to be transferred to the output signal.

Lemma 3.3 Let a,, be the input signal, s, be the output signal and 4 be the clock signal
of an ideal latch, where LEGAL(.g,,, s,, , T) for the latch is satisfied for all time T. If
s,(t) =1., then there exist digital clock signals 0', 4'1 and 0'), that equal 4 for all t' such
that 0(t') is valid, and either

1. LEGAL(s', s, , 0' , t) and LEGAL(s',,sv,, 0', t) cannot both be satisfied by any possible
signal output signal s' whose value at time t is valid, or

2. LEGAL(S,,, a,,, 0',t) constrains s(t) to be the value of a,,,(t') for some t' less than or
equal to t, where sv(t') is ..

Proof: The strategy for the proof is to examine each of the conditions that that allow
s3,(t) to equal I when LEGAL(a,,, S', ), t) is satisfied. In each case, ive show that at least
one of the conditions stated in the lemma hold.

If 4 equals HIGH at time t, the lemma holds trivially, since LEGAL(s8, 8s,,4), t) itself
constrains sv(t) to be the value of s,,i(t). In addition, none of the clauses of equation 3 ever
reference any signal values for times not in the interval (t,.vjd, tj. Consequently, we can
assume without loss of generality that 4 is not equal to HIGH at time t, and 6', 40 and 0'
are equal to 4), except over the interval (t4.v-d, t-inviid1, where t-invaid is in the interval if
t  v.iavd equals t.
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Figure 8: The figure illustrates how 0' from lemma 3.3 is constructed.

There are two cases to consider if 0 equals Low at time t. If 6 equals Low at time t
and LEGAL(s, a,, 6, t) is satisfied, s. (t) equal to .I implies that either a9, is not stable over
(t0-v.Ud, t-mvaid), or s., is stable over (t.Ud, t.4mUdl] with a value not equal to Sv (t,.,.Ud).

If 6 equals Low at time t, and a,, is not stable over (to.,.ud, t,.nvzUd), then a,,, must have
value I over some non-zero length subinterval of (t.,,.Ud, t#.inv&Ud). To see this, consider
the following. If a, is not stable over (t*,-,id, t-i g.id), then either s,,, is constant with
value I over (t4.Ud, t -i-vaUd), or s, holds two different values during (t#.,iUd, t4.inwmUd).

In either case, however, as,, must have value I over some non-zero length subinterval of
(to.vd, t4-jnad), since a digital signal must take on the value I over some open interval
between any two times that it has a valid value.

If .s,, has value I over some non-zero length subinterval of (t#-,Ud, t,.inbd), we can
construct a 0' such that s,(t) is equal to the value of s, over the subinterval. We construct
0' by introducing into the subinterval a short closed interval, during which 0' is HIGH,
followed by a short open interval, during which 0' is 1, and setting 0' equal to Low for
times after the open 1. Observe that 0' is such that the invalid value of s,,, is latched and
held through time t. We can thus conclude that the lemma holds when 4 is Low at time
t, and a9,, is not stable over (t.vaud, t,.ind). Figure 8 illustrates how 0' is constructed.

If 4 equals Low at time t, and s,,, is stable over (t.vad, it-j,,jdj with a value not equal
to s,,(t..,.O), we can show that 4 must equal Low at time t..ad. First, by the definition
of digital signal and t.,.vd, 6 cannot equal .L at t#.,ad, since this would imply that either
STABLE(4, Low) of STABLE(6, IGH) contained a nonoverlapping open interval. Similarly,
4, cannot equal HIGH at time t#.,.ud, since s,, stable over (t.,.vd, t#.,jnud) with a value not
equal to sv(t.,,) would imply that STABLE(se,, z) would contain a nonoverlapping open
interval, for some valid value z. Consequently, we can restrict the proof for 6 equals Low
at time t, and s,, is stable over (t-,ud, t.,aidj with a value not equal to s, (i..d), to
the case where 6 must equal Low at time to.vsd.

If 46 is equal to Low at time t#.,.ad, we can show the lemma by constructing an ap-
propriate pair of clock signals, , and 04. The clock signal 0', simply has value Low over
(t,&v,,id, t#..,jjdj, so that 0, is Low over [t#..ud, t]. By lemma 3.1, a. at time t must equal
J,(t#.va.d), if LEGAL(S,,, a, 0', t) is to be satisfied. The clock signal 44 is constructed in
a way similar to the clock signal 0' used when a., is not stable over (t,..4Ud, t-.,didj.

* By construction, a, at time t must equal the value of s,,,. during (td.Ud, t4inwd, if
LEGAL(sv, s,,, 0', t) is to be satisfied. Since this case only applies if s,,, is stable over
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(to.-vald, t-iav.Jidj with a value not equal to sv(t6.jtd), we can conclude that LEGAL(S,, s.', 0,,, t)
and LEGAL(S', $,,, 0', t) cannot both be satisfied by any possible signal s' whose value at
time t is valid. Consequently, the lemma holds when 4 is Low at time t.

If 0) is I at time t, we can show the lemma by applying an argument identical to the
one for 0 equal to Low at time t. Simply annotate 0', 0' and 0' so that they are all Low
at time t. I

Lemmas 3.4 and 3.5, verify facts about ideal latches that are needed in section 6 where
we show that ideal circuit components can be used to model complete circuits. In addition,
they verify the intuitive notion that the output signal of an ideal latch cannot suddenly
become valid, while the clock signal of the latch is underdefined.

Lemma 3.4 Let a,,, be the input signal, s. be the output signal and 4 be the clock signal of
an ideal latch, where LEGAL(s,, a, , 4), T) for the latch is satisfied for all time T. If is I
over the interval (t., t.), and for some t E (t,, t1 9,,, is not stable over the interval (t,, t),
then s,, must be constant and I over the interval [t, tel.

Proof: The first step in the proof is simply to show that s.,, not stable over the interval
(t.,t] implies that s,,(t) must equal I. To see this, consider the following. Since by
definition to.inval d must be less than or equal to t., we know that (t., t] is a subinterval of
(to- Ud, t] and consequently, that s,,, is not stable over (t#,,.Uid, t]. Recalling the definition
of stability, we therefore know that during (t.-vjd, t] s,,, is either 1) not constant or 2)
constant with value I. In addition, since 0) is I at time t, the value of s,, is determined in
one of two ways. Either s,,'(t') = Sv(t-vad) for all t' E (t.vd, t] and s,,(t) = Sv(tO-v.Uid) or
s,,I(t') # Su (tO-vald) for some time t' E (t-v.zUd, t] and s,(t) =.. Now, if 9,,, is not constant
during (toy.1id, t], then for some time during (to, t] its value cannot be equal to $,,(t -vjijd)

and s,,(t) must equal I. Alternately, if s,,, is constant with value -L over (tO,-vad, t], then
either s5(tO.vajd) equals I, or it does not. In either case, s,,(t) must again equal I.

The finish the proof, we simply must show that s, not stable over (t., t] implies that
.,, is not stable over (t,, 7], for all T in [t, t.j. This is obviously true, however, since (t., t]
will always be a subinterval of (t,, T]. I

Lemma 3.5 Let s,,, be the input signal, .,, be the output signal and 4) be the clock signal
of an ideal latch, where LEGAL(S,, S,', 4, 7) for the latch is satisfied for all time 7. If 4
is -. over some interval (to, t.], rhen s,, can change value at most once during (t., t.], and
the transition must be from a valid value to 1.

Proof: While this lemma may seem to be an obvious consequence of lemma 3.4, there are
in fact four possible cases that must be considered in the proof. First, s,,(T) may equal
a,,(t,,jajd) for all 7 E (to.vud, tel. In this case, s. equals s,(tO.,ld) ovr (t., t. I and s,, does
not change value at all during the interval. Second, s,,,(T) may be constant with some
value that is not equal to s,(t,-, d) for all 7 E (t#.vald, t . In this case, a,, equals 1 over
(t,, tJ and once again a,, does not change value at all during the interval. Third for some t
in (t,, tel, s,,' may be stable with value s,(t,-Ji) over (t,.ad, 7] for all T in (t., t], but not
for any T in (t, tj. In this case, equation 3 and lemma 3.4, imply a single value transition,
with a,, equal to S,,(t*-.i.d) over (t,, t'], and equal to I over (t', tel. Finally, for some t in
(t., tel, s,, may be stable with value not equal to 3, (t,-,.Ud) over (t4-.alid, T] for all 7 in
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(t,, t], but not for any T in (t, t. 1. In this case, equation 3 and lemma 3.4 imply that the
" value of s,, is I. over the entire interval, (t., t,], with no transitions. I

As a final note, we have assumed throughout this section, that the input signals of
ideal components are digital signals, but have made no attempt to determine whether this
implies that the output signals are digital. We address this question in section 6, in the
more general context of complete circuits.

4 Strictly Clocked Circuits
This section presents our basic model for how circuit components are used to construct
complete circuits. Our representations for a circuit and a computation on it are given, and
we define the class of strictly clocked circuits, that is the subject of the remainder of this
thesis.

A circuit is constructed by interconnecting a finite number of electrical components,
such as transistors and logic gates. We represent a circuit as a directed graph G = (V, E),
where each vertex in V is a circuit component, and (u, v) E E if the output signal of
u is an input signal of v. We assume that each component has an input edge for each
of its input signals, which is equivalent to assuming that a circuit contains no "floating
wires". Observe that in this representation, things like wires in a circuit are considered to
be electrical components. Intuitively, this is how it should be, since objects like wires can
in fact have very complex electrical behavior. A computation C on a circuit G = (V, E) is
a set of signals, that contains for each component v in V a signal s,.

A computation C implicitly contains two sets of circuit inputs. The first is the set of
clock signals for latches. We denote this set as 0, and assume that it contains only digital
clock signals. The second is the set of signal values at time -oo. This set is denoted as 2,
and specifies the initial conditions of the circuit components. In this thesis, we consider 4
to be constant for all computations on a particular circuit, thus making Z the only circuit
input.

A digital circuit is a circuit G = (V, E), where V contains only digital circuit compo-
nents, and computations on G contain a unique signal s,, for each component in V. Just
as for individual digital components, we define a constraint for a digital circuit

LEGAL(C, t)

that if satisfied at time t, indicates that at time t all signals in C are consistent with the
behavior of each digital component in V. An entire computation C is said to be legal, if
LEGAL(C, 7) is satisfied for all T.

The stipulation that a. be unique is not equivalent to assuming that only a single com-
ponent can "drive" a particular wire, since a buss can be viewed as an electrical component
with an input for each component that can drive it. Observe, however, that the unique-
ness of 9. does imply that a signal in a computation only has to satisfy the output signal
constraint of a single digital component. Consequently, our definition of a digital circuit
includes a tacit assumption that the function associated with a functional element specifies
a value for all possible combinations of valid input signal values. In the case of a buss,
this assumption is equivalent to assuming that function associated with the buss is able to
"resolve" any buss conflicts.

This thesis considers digital circuits that have all of the following properties:
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1. The set of clocks 0 is finite, and its elements are fully specified digital clock signals.
Circuits with this property are statically clocked.

2. There exists a start time, t,t,, not equal to -oo, such that all signals in 4 are constant
over the interval [-oo, tpt,.,]. Circuits with this property are statically initialized.

3. For any time t, every cycle in G contains at least one latch whose clock signal has
value Low at time t. Circuits with this property are synchronous.

A circuit with all these properties is said to be a strictly clocked circuit.
Of the three properties of a strictly clocked circuit, static initialization and synchroneity

are effectively met by most MOS circuits. For example, most circuits incorporate some
form of reset mechanism, that provides a means of establishing a start time for subsequent
computations. Synchroneity is also generally met, since circuits typically use latches to
prevent race-conditions between combinational logic blocks designed for minimum delay.
Static initialization and synchroneity may not be met by designs that are pushing the state-
of-the-art in circuit design, but we believe that with appropriate extensions our model can
be generalized to circuits without these properties.

Many modern MOS circuits are not statically clocked, and it is less clear whether
our model can be generalized to circuits without this property. The difficulty is related
to the problem described in section 3, where it was noted that determining whether the
output signals of functional elements are underdefined or undefined is too computationally
expensive to be practical. If we are unable to determine the outputs of functional elements,
using these outputs as clock signals introduces additional uncertainty. The implications of
this uncertainty are at the time of this writing not clear.

5 Computational Predicates

In this section we define the class of computational predicates, that can be used to prove
properties of strictly clocked circuits. We begin by discussing some of the issues of analyzing
the time dependent behavior of a strictly clocked circuit, and then develop the mechanism
of computational ordering for performing such analysis. In addition, the important concept
of circuit configurations is also introduced.

A primary goal of this thesis is to show that our models for ideal circuit components
also form a model for complete circuits. Until now, we have only examined the behavior of
isolated digital components. It remains to be shown whether a group of digital components*
can be used in aggregate to form a circuit that exhibits reasonable behavior. For example,
do legal computations exist for strictly clocked circuits?

Unfortunately, it is not clear how to prove properties of strictly clocked circuits, since
there exists many indirect constraints on the signals in a legal computation. Consider, for
example, the circuit in figure 9, where the latch A not only places constraints between the
values of signals s4 and .s,,, but via functional element B also indirectly places constraints
between the values of s,,, and s,,,,. The situation is made even more difficult by the fact that
the path via components A, B, C and D implies that there exists an indirect constraint
between s,, and itself. Accounting for all such indirect constraints becomes a formidable
task, when considering an entire circuit for all possible values of time.
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Figure 9: Shown is a four-component circuit. Observe that the latch A not only places constraints between
the values of signals s. and a,,, but via functional element B also indirectly places constraints between
the values of s., and s,,"

A common method for attacking problems that are characterized by indirect constraints,
is induction. The method of induction that we will use, proves that a set of objects has a
certain property by using the following three basic steps:

1. The desired property for the set is reformulated as a predicate on elements in the set.
The predicate is such that if the predicate is not satisfied by any elements of the set,
then the set has the original property.

2. An acyclic induction ordering of all elements in the set is established, such that if the
predicate is satisfied by some element, then some element immediately earlier in the
ordering must have also satisfied the predicate.

3. Elements that have no other elements before them in the ordering, are shown to not
satisfy the predicate.

Once all three steps have been completed, the following reasoning is used to show that the
original set must have the original property. Assume that there exist elements of the set
that satisfy the predicate, and follow the acyclic induction ordering back to find an element
z, such that z satisfies the predicate, but all elements immediately before z in the ordering
do not satisfy the predicate. The only way for such an x to exist, is if z has no elements
before it in the induction ordering. Consequently, since elements with no elements before
them in the induction ordering have been explicitly shown to not satisfy the predicate, the
assumption that any elements satisfied the predicate must have been in error.

The astute reader will note, however, that using inductive methods is much harder than
the preceding description indicates. Particularly when continuous quantities, like time, are
involved. The difficulty resides in the possibility that we could follow the ordering back
indefinitely, without ever finding a suitable element z. Consider, for example, the property
"is less than or equal to 5", for the non-negative real numbers, inductively ordered by the
less-than operator. Clearly, the predicate "is less than or equal to 5" is not true at 0, which
is the only non-negative real number that has no other non-negative reals that are less than
it. In addition, for any number z that is not less than or equal to 5, we can obtain another

*real number y that is less than x, but still not less than or equal to 5, by using the equation
y = z - 0.5(x - 5). Consequently, the property "is less than or equal to 5", can be fitted
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into our framework for an inductive proof, but it is obvious that not all non-negative real
numbers are tess than or equal to 5.

Fortunately, the computational predicates form a class of properties, for which inductive
techniques can be adapted. A predicate is a function that maps signal-time pairs into the
set {TRUE, FALSE). A predicate P is said to be satisfied by a signal 9,, at time t, if
P(s,, t) = TRUE. A predicate P is a computational predicate if it has the following five
properties.

1. Every signal-time pair (s, t) in a computation C is mapped by P to the set {TRUE, FALSE}.
A predicate with this property is fully defined.

2. P(s,,, t) = TRUE must imply that P(s,, T) = TRUE for all T greater than or equal
to t. A predicate with this property is monotone.

3. If s, is the output signal for digital component v, then P(s,,, t) = TRUE must imply
that P(s,,, t') = TRUE, for some s,, that is an input signal for v, and some t' that is
less than or equal to t. A predicate with this property is causal.

4. If s, is the output signal for some latch whose clock signal has value Low at t, then
P(sv, T) = TRUE over some interval (t, t'] must imply that P(s,, t) = TRUE, and
P(s,,, T) = FALSE over some interval [t', t) must imply that P(S,, t) = FALSE. A
predicate with this property is latchable.

5. If a,, is the output signal for some latch whose clock signal has value Low at -o,
then P(s, -oo) = FALSE. A predicate with this property is uninitial

The same induction ordering is used in all the inductive proofs for computational pred-
icates. Let C be a computation on a strictly clocked circuit, G = (V, E). The ordering
used to to inductively prove computational predicates is called the computational ordering.
The computational ordering orders signals based on two orderings of signal-time pairs. The
first ordering for signal-time pairs is based on the times, while the second ordering is based
on the signals.

The first ordering for signal-time pairs is done chronologically by time. The signal-time
pair (s,,, t) satisfies the predicate P chronologically before the signal-time pair (s,,, t'), if
P(s,,, t) equals TRUE, and t is less than t'. In general, chronological ordering is not sufficient
to isolate a single signal-time pair that satisfies P before all others. For example, suppose
that P(s,t) equals TRUE, if j,(t) equals L. We cannot guarantee that there exists a
signal-time that satisfies P chronologically before all others, since equation 1 states that
the input signal of a functional element changing to I constrains the output signal of that
functional element to change to 1 simultaneously.

To order signal-time pairs that satisfy P at the same time t, we consider the structure of
the circuit G. For any strictly clocked circuit G, and time t, the set of clock signals 0 maps
to each latch a value for its clock input. Until some clock signal changes value, the circuit
is equivalent in behavior to the circuit G, that is obtained by replacing latches mapped to
HIGH with zero-delay identity functional elements, and deleting the input edges to latches
mapped to Low. The outputs of latches mapped to Low are effectively external inputs,
since their value cannot be effected by the values of other signals in the circuit. Since G
is strictly clocked, and therefore synchronous, Gt will always be acyclic and consequently
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provides a partial ordering of the digital components in G. The circuit Gt is the configura-
tion of G at time t, and provides a way to break ties between signal-time pairs that satisfy
'P at time t. Let s, and s,,, be the output signals of two digital components v and v' in
V, respectively. The signal-time pair (s,, t) satisfies P causally before the signal time pair
(s,, t), if both P(s,, t) and P(s,,, t) equal TRUE, and there exists a path from v to v' in
Gt.

Unfortunately, a naive combination of chronological and causal ordering does not allow
us to inductively prove computational predicates. One might, for example, think that we
could consider a signal-time pair (s,,, t) to be before a signal-time pair (a,, t'), if either
(s,, t) satisfies P chronologically before (s,, t'), or (s, t) satisfies P causally before (s,t').
Observe, however, that we can setup a situation identical to the earlier "less than or equal
to 5" example, by defining a predicate that is TRUE for a signal-time pair (s,, t), if t is
greater than 5.

Fortunately, we can perform inductive proofs of computational predicates, by using
chronological and causal ordering to establish a related ordering that is over the set of sig-
nals. Let s and a,, be any two signals in a computation C. The signal s, is computationally
before s,,, for the predicate P, if

1. there exists a time t, such that (s,, t) satisfies P chronologically before (s,,, T) for all
7, or

2. there exists an interval (t., tel, such that for all 7' in (t., t.],

(a) (s., 7) and (s,,, T) satisfy P,

(b) (s,, t) and , t) do not satisfy P for any t before K(t., tej, and

(c) the configuration of the circuit GT is constant, and (s., 7) satisfies P causally
before (s,,, T).

Observe that computational ordering is an ordering of the set of signals. Since for any
circuit/computation there are only a finite number of signals, computational ordering is
not prone to the difficulties noted in the "less than or equal to 5" example.

Intuitively, computational ordering first orders signals by when they first satisfied P,
and breaks ties based on the configuration of the circuit at the time P was first satisfied.
Extending our terminology, we say that signals ordered using chronological ordering are
chronologically ordered, and similarly, signals ordered using causal ordering are causally
ordered. Observe that since causal ordering for signal-time pairs is only a partial ordering,'
computational ordering of signals is also only partial. A signal s, is computationally first
for a predicate P, if no other signal is computationally before s,,.

The first step in showing that computational predicates can be proved inductively, is to
show that if there exists a signal-time pair that satisfies a computational predicate P, then
there exists a computationally first signal for P. Lemmas 5.1 and 5.2 prove the existence
of a computationally first signal, in two steps. First, lemma 5.1 shows that chronological
ordering, can isolate a set of signals, such that the interval [t,, t.] needed for applying
causal ordering exists. Second, lemma 5.2 shows that at least one computationally first

*signal can be found in the set isolated by lemma 5. 1.
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Lemma 5.1 If P is a monotone predicate, then for any two digital signals s, and s",,
either one signal is chronologically before the other or P(s , T) equals 7(s,T) for all T.

Proof: If P is monotone, then for any signal, the signal either satisfies P for all time,
satisfies P for no time, or for some time t does not satisfy P over the interval [-00, tj
but does satisfy P for all times after the interval. Observe, however, that if P(s, ") does
not equal P(s,, T) for all T, then P must be satisfied by one signal at some time strictly
before all the times that P is satisfied by the other, which by definition implies that one
signal is chronologically before the other. I

We now show that if a computational predicate P is ever satisfied by some signal-time
pair from a computation on a strictly clocked circuit, then there exists some signal in the
computation that is computationally first for 'P.

Lemma 5.2 Lt V be some computational predicate, and C be a computation on some
strictly clocked circuit G. If for some signal s,, in C and time t, P(s,,t) is TRUE, then
there ezists a signal in C that is computationally first for P.

Proof: By definition, there exists a computationally first signal, unless there exists some
set of signals S such that for every signal s,, in S, there exists another signal s, in S that is
computationally before s,. We can show, however, that such a set of signals cannot exist.

We first show that the existence of such a set S implies that there must exist a time
t, such that all signals in the sequence do not satisfy VP over the interval [-o, t] but do
satisfy P for all times after the interval. Consider the following argument. Since there are
only a finite number of signals, the existence of S implies that there exists a cyclic sequence
of signals, such that each signal in the sequence is computationally before the next. If we
consider each adjacent pair of signals in the sequ nce, lemma 5.1 guarantees that any pair
must either be chronologically ordered or satisfy P at all the same times. Observe, however,
that no pair of adjacent signals can be chronologically ordered, since we could then follow
the cyclic sequence back and conclude that some signal was chronologically before itself.
Thus, the existence of S implies that there must exist a time t, such that all signals in the
sequence do not satisfy P over the interval [-oo, tj but do satisfy P for all times after the
interval.

Now, since G is strictly clocked, there must exist a time t' > t such that the configuration
of G is constant over the intervd [t, t], where it, t'j contains t if and only if the interval
[-oo, t) did not. To see this, consider the following. Since G is strictly clocked, and
therefore statically clocked, 0 contains a finite number of locally finite digital clock signals.
Consequently, G can change configurations only a finite number of times during any interval
[tl, t 2], where ti, t2 E IR. In addition, since G is strictly clocked, and therefore statically
initialized, we can also conclude that G can change configurations only a finite number
of times during any interval [t1, t2], where tl, t2  IR U {-oo}. NoW, if we let t" be any
time greater than t, by the preceding arguments, G can change configuration only a finite
number of times during the interval Kt, t'". Consequently, there must exist a t' greater than
or equal to t but less than t" such that the configuration of G is constant over Kt, tl.

Now, let Gg be the configuration corresponding to the interval [t, t'J. Since none of
the signals in the sequence are chronologically before any of the others, the fact that each
signal is computationally before the next, implies that there-exists a cycle in G. This,
however, is not possible, since G is strictly clocked, and therefore synchronous. I
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We can now prove the theorem that will allow us to easily determine whether a com-
putation on a strictly clocked circuit has a particular property. Theorem 5.1 states that no
computational predicate can be satisfied by any signal-time pair from a computation on a
strictly clocked circuit. Consequently, a computation on a strictly clocked circuit can be
easily shown to have a particular property, if the negation of the property can be cast as a
computational predicate.

Theorem 5.1 No computational predicate can be satisfied by any signal-time pair from a
computation on a strictly clocked circuit.

Proof: Let 'P be a computational predicate, and C be a computation on a strictly clocked
circuit G. If 7) is satisfied by some signal-time pair from C, then lemma 5.2 implies that
there exists in C a computationally first signal for P. We can show, however, that no such
computationally first signal can exist, and thus conclude that P cannot have been satisfied
by any signal-time pair from C.

Let s,, be the implied computationally first signal. Since 'P is computational, and
therefore uninitial and monotone, we know that there exists a t such that 'P is not satisfied
by s, over the interval [-oo, t4, but P is satisfied by s, for all time after the interval. In
addition, by repeating the argument used in lemma 5.2 we know that there exist a time
t' > t such that the configuration of G is constant over the interval Kt, tl, where Kt, tl
contains t if and only if the interval (-oo, tj did not.

Using the interval Kt, t], we can show that s, must be the output signal of a latch whose
clock signal has value Low at t. Consider the following argument. If 9,, were the output

* signal of anything other than a latch whose clock signal had 'alue Low over Kt, t'), then
the fact that 'P is computational, and therefore causal would directly imply that s, was
computationally preceded by some other signal. Consequently, ,, must be the output signal
of a latch whose clock signal has value Low over [t, tl. In addition, since G is strictly
clocked, and therefore statically clocked, the clock signal for the latch that corresponds to
s. must be digital and must have value Low over the closed interval [t, t']. Consequently,
s, must be the output signal of a latch whose clock signal has value Low at t.

Proof of the theorem is now easy. So far, we have demonstrated that if 'P is satisfied
by some signal-time pair from C, then there must exist a signal s,, in C such that

1. 9,, is the output signal of a latch whose clock signal has value Low at time t,

2. 'P is not satisfied by s, over the interval [-oo, t], and

3. P is satisfied by a,, for all time after the interval [-oo, t).

No such signal can exist, however, since the fact that 'P is latchable implies conflicting
values for P (,, t). I

Theorem 5.1 is significant for three reasons. First, it provides a way to perform a
"generic" inductive proof for a property, by simply casting the property as a predicate,
showing the negation of the predicate to be computational, and invoking theorem 5.1. In
effect, the reference to theorem 5.1 repeats the basic inductive proof that was amortized

* across the proofs of lemma 5.1, lemma 5.2 and theorem 5.1. This ability to indirectly
repeat the inductive argument represents a great notational convenience. Second, the
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theorem provides a mechanism for integrating the limit arguments that will generally be
needed to show the latchability of a predicate into the inductive framework of computational
ordering. Third, the theorem allows subsequent proofs to focus on the significant properties
of a predicate, rather than the arguments that make use of them.

6 Model Consistency

In this section, we formally confirm the ability of digital components to model complete
circuits. Specifically, we show that there exists for any strictly clocked circuit G and set of
initial conditions for G, a unique digital computation C for which LEGAL(C, T) is satisfied
for all T. In addition, the usefulness and generality of theorem 5.1 is demonstrated by the
use of computational predicates to prove the different properties of C.

Electrical circuits possess three natural properties, that strictly clocked circuits must
share if strictly clocked circuits are to be considered representations for electrical circuits.
First, for any set of initial conditions, an electrical circuit has some behavior, whether
it be to compute some function or to catch fire. Second, the behavior of an electrical
circuit is such that the output signals of components are meaningful input signals for the
components that use them for this purpose. Third, the behavior of an electrical circuit is
deterministic and therefore unique for a particular set of initial conditions. Circuits that
possess all these properties is said to be well formed. If strictly clocked circuits are not well
formed, then strictly clocked circuits are incapable of accurately reflecting our most basic
intuitive notions about electrical circuits.

Of the three natural properties, the most important from a formal stand point is the
existence of some behavior. For strictly clocked circuits, this property is equivalent to
the assertion that for any initiai conditions, there exists a computation C that satisfies
LEGAL(C, T) for all T. If no such computation exists, then we are left without the ability
to draw conclusions based on equations 1 and 3, and in effect are left with nothing but a
meaningless formalism. Observe that this property does not assert that the signals in C
must necessarily be digital, just as the corresponding property for electrical circuits allows
for catastrophic behavior such as catching fire.

Once the existence of a computation is established, the other two natural properties
become meaningful. The property that the output signals of components be meaningful
inputs signals, is equivalent to stating that C contains only digital signals. Similarly, the
property that behavior is deterministic, is equivalent to stating that for any set of initial
conditions, C is unique. Both these properties are "nice" properties, that we expect prop-
erly operating circuits to possess. Observe, however, that even without these properties, it
would still be possible to use equations 1 and 3 to reason about C.

The following four lemmas state that strictly clocked circuits possess all the properties
for being well formed. In addition, the proofs for the lemmas demonstrate how compu-
tational predicates can be applied to different types of properties. Lemmas 6.1 and 6.2
show that if a legal computation exists for a strictly clocked circuit, then the computation
must contain only digital signals. Lemma 6.3 and theorem 6.1 show that there exists a
unique legal computation for any strictly clocked circuit and set of initial conditions. Lem-
mas 6.1 and 6.2 are presented first, because the straight forward computational predicates
they utilize provide an easier introduction to how properties can be cast as computational
predicates.
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Lemma 6.1 Let C be a computation on some strictly clocked circuit G = (V, E). If C
satisfies LEGAL for all time, then for each signal s in C, and value x E D, the values t,
such that s,(t) = x, form a set STABLE(s, X) of nonoverlapping closed intervals.

Proof: The lemma obviously holds, if we can show that no signal-time pairs from C satisfy
the predicate Vi, where:

Predicate. P, (s., t) equals TRUE if, for some x E D, the set STABLE(s, x) n
{t' : t' < t} contains a nonoverlapping open interval, and FALSE otherwise.

Thus, we can prove the lemma by showing that ">1 is computational, and invoking theo-
rem 5.1.

As will be typical, P is clearly fully defined, monotone and uninitial, and can be shown
to be causal and latchable with an analysis of the different clauses of equations 1 and 3.
The overall strategy for causality is to assume that P (a,,, t) = TRUE, and demonstrate
on a clause by clause basis that if equations 1 and 3 are satisfied, then some input sig-
nal s,, must also have a nonoverlapping open interval in STABLE(.S,,,x) n {t' : t' < t}, for
some value :. Specifically, we let [t1 , t 2j be the nonoverlapping open interval implied by
'P(s,,, t) = TRUE and consider how each clause in equations 1 and 3, that may have to

be satisfied by .9, over Kt1,t 2j , effects the value of s,, at the end points tj and t2. In each
case, we can show that either the end point must be included in [ti, t2j, and consequently
cannot have caused P, to be TRUE, or P1(s,/, t3) = TRUE, for some input signal a,,,. This
is sufficient for showing P1 to be causal, since t2 must be less than or equal to t. Since
equations 1 and 3 have a total of six different clauses, we adopt the convention of itemiz-

* ing parts of an analysis by the type of ideal element involved and the specific case being
considered.

Functional Elements
s,,(t) = f(sI(t),s 2 (t),... ,sk(t)):

This case applies if si is stable for all i = 1,2,... , k over the miterval [t - d, t]. Conse-
quently, the inclusion of [t(, t2) in STABLE(s, x) U {t' : t' < t} implies that all si are stable
over the interval Kti - d, t 2l . Observe, however, that if all input signals were stable over
ft, - d, t2J then s. would have to be stable over [t, t2] and contradicts the assumption that
K(t1 , t2J was open. Consequently, there must exist some si that is stable over the interval
[th, t2 J but not stable over the interval [t - d, t2]. This directly implies that for the value
X', that si has during the interval Kt1 , t2J, the set STABLE(si, x') must contain an interval
that is open at either t1 or t 2. Thus, since t1 must be less than or equal to t2, P1 (si, t2)
must equal TRUE.

sJ(t) =1:
Since STABLE(s.,.T) is defined only for elements of the data domain V, s, cannot be I

at any time during (tl, t2j. Consequently, this case is not applicable.

Latches
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For simplicity, this part of the analysis will not be based on [t1 , t2), but rather on two
subintervals of Kt1 , t2 j. Since G is strictly clocked, and therefore statically clocked and ini-
tialized, G can take on only a finite number of configurations during the interval [-o, t2).
Consequently, there must exist t' > t1 and t' < t2, such that the configuration of G is
constant over the intervals Kt1, t] and [t', t2j. By basing our analysis on these two end
intervals, we avoid the complications introduced by transitions of the clock input 4, and
allow ourselves to consider each end point separately. This is important since, for any given
circuit, it is likely that the different ends of Kt, t2  will be covered by different clauses.

5,(t) = s,,i(t) if O(t) = HIGH:
Showing causality is simple for this case, given the assumption that 0 is a digital clock

signal. Consider the end interval Ktj, t']. If [ti, t'] is closed, the end interval can be ignored.
If it is open, consider the following. Since 4 is a digital clock signal, STABLE(o, HIGH) must
contain only closed intervals, and thus, 4 must have value HIGH, and ,, must equal q,,,
during the entire interval [t,, t']. Consequently, j,, stable, but not equal to s,,(ti), during
the interval Kti, t'] directly implies s, stable, but not equal to sv,(t 1), during the interval
Kt1, t2]. The other end interval [t', t2l can be covered with an identical argument.

s,(t) = sv(t~wald) if 4O(t) =.1:

For K , t4], this clause always implies that tj is in (t1 , t']. To see this, observe that
since s, is assumed to be stable over Ktj, t'], it cannot be equal to I over that interval, and
thus its value during (t2.VUd, 2] must equal its value at t'2,.,gdr Consequently s,, must be
stable over the interval It'.yat , t] and Kt1, t] cannot have been open, since t'2 .,,a must

be less than or equal to tj.
For [ti, t 2j, we must consider the value of 0) at t 2. If 0(t 2 ) is equal to Low, then s,,(t 2)

will equal s,(t2,t,-,id) if s,, equals s,,(t2,.jd) over (t2ovd, t2, .v d). Consequently, since
s,, stable over [ti, t2 j implies that s,, must be stable over (t2-iv.Ud, t 2), and t2,.nv jd equals
t 2 , s,, at time t2 must be equal to its value over [t, t 2 ) and thus by definition as must be
stable over [t', t 2 ].

If O(t2) equals I, then [ti, t 2 l can be open only if a,,, is stable over (t2o.,, t 2), but not
over (t 2 O-d, t2 j]. This, however, directly implies that STABLE(s,,, z)l {t' : t' < t}, contains
an open interval for the value of .9,, during (t02-t d, t2 ).

Finally if O(t 2 ) equals HIGH, then s,,(t 2) is equal to 9,,,(t 2 ). Consequently, since s, stable
over It, t l implies that s, must be stable over (t20. 4d, t2 ), [t4, t 2 l can be open only if .,,,
at time t2 is not equal to its value over the interval (t2.tim,, t2 ). Just as for 4(t 2 ) equals
.I, however, this implies that STABLE(S,,,, x) nl {t': t' < t}, contains an open interval for
the value of 3, during (tl-inval, t 2 ).

s,(t) = s.(t#,i h) if O(t) = Low:
For Kti, t4], the fact that 4) is a digital clock signal, implies that 4) must be Low over

[t,]. Lemma 3.1 therefore implies that s,, must be stable over [t, t') and consequently,
that Ktj, t'] must be closed. The second end interval [t', t 2 j, can be covered with an iden-
tical argument.
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s()=1:
Just as for functional elements, this case is not applicable, since STABLE(sV, x) is defined

* only for elements of the data domain D. Having addressed all clauses of equations I and 3,
we can conclude that 'P, is causal.

To demonstrate that P, is latchable, we assume that 'P1 is not latchable and show that
this results in a contradiction. First, we let s, be the output signal of some latch whose
clock signal is Low at time t. Now to prove that if 'P,(3,,, T) = FALSE over [t', t) then
'P1(s,,,t) = FALSE, we show that if P 1(.g,,,T) = FALSE over (t',t) does not imply that
PI(s,, t) - FALSE, then there must exist an open interval ft., t) such that the configuration
of the circuit is constant over ft., t), and the value of s,, over ft., t) is constant and not equal
to the value of s, at t. The existence of such a interval will be shown to be a contradiction,
since such an interval is not possible for any value of 4) over ft., t). The proof that if
P, (s ,, T) = TRUE over (t, t'] then P7)(s, t) = TRUE, is completely symmetrical.

Let s., be the output signal of some latch whose clock signal is Low at time t, and assume
that P, (s,, T) = FALSE over some interval [t', t) but P, (s, ,t) = TRUE. Since P1 for sis
not TRUE for any time less than t, the open interval implied by 'P,(s, t) = TRUE must in
fact be open at t. Consequently, by repeating the reasoning from the proof of lemma 5.2,
we can conclude that 'PI(s,,,T) = FALSE over some interval [t',t) but P1(s,t) = TRUE,
implies that there exists some t. less than t, such that the configuration of the circuit is
constant over ft., t), and the value of s,, over ft., t) is constant and not equal to the value
of s,, at t. We can show, however, that such a t. cannot exist for any value of 4) over the
interval [t., t).

It is easy to show that 0 cannot equal Low or HIGH over ft., t). If 0 is Low over ft., t),
then the fact that 4, is assumed to be Low at time t implies that 0 is Low over ft., t] and
consequently that, by lemma 3.1, the value of s. over the interval ft., t) cannot be different
from the value of s,, at t. In addition, 4) cannot be HIGH over ft., t), since 0 equal to Low
at time t would imply that 0 was not a digital signal.

Showing that 4 cannot be I over ft., t), is more intricate, since it requires examining two
possible cases. First, if s,, has a valid value over ft., t), then it must have value s(t6- ad)
over [t., t). Consequently, we can conclude that the input signal s,, of the latch is constant
and equal to 3,(t0.id) over [to.vaid, t). Observe, however, that equation 3 then directly
implies that the value of .9. at t must also equal s,(t.ii). Similarly, if 9,, does not have
a valid value over ft., t), then it must have value 1 over ft, t), and the input signal .s,' of
the latch must not be equal to $,,(to.,,sHd) over [t4,id, t). As before, however, equation 3
then directly implies that the value of s,, at t must also equal .- Consequently, if 4 is I
over ft., t), then the value of s, over the interval ft., t) cannot be different from the value
of a,, at t.

The proof that, if P, (9, T) = TRUE over (t,tl then P (s,, t) = TRUE, is symmetrical,
except that we establish the existence of a t, greater than t, such that the configuration of
the circuit is constant over (t, t.), and the value of s,, over (t, tel is constant and not equal
to the value of s, at t. It is easy to show, that such a te cannot exist for any value of
over the interval (t, te]. I

The second property of a digital signal requires that for any signal 9,, and value z E V,
STABLE(S,,, z) is locally finite. Lemma 6.2 shows that STABLE(s, z) is locally finite for
any signal a,, in a legal computation.
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Lemma 6.2 Let C be a computation on some strictly clocked circuit G = (V, E). If C
satisfies LEGAL for all time, then for each signal s,, in C, and value z E V, the values t,
such that s,,(t) = x, form a set STABLE(s,,,Z) that is locally finite.

Proof: The lemma obviously holds, if we can show that no signal-time pairs from C satisfy
the predicate P 2, where:

Predicate. P2(s , t) equals TRUE, if s, changes value an infinite number of
times during the interval [-oo, t], and FALSE otherwise.

Thus, we can prove the lemma by showing that P2 is computational, and invoking theo-
rem 5.1.

Just as for 'P1 , the predicate "P2 is clearly fully defined, monotone and uninitial, and can
be shown to be causal and latchable with an analysis of the different clauses of equations 1
and 3. The strategy for causality is to assume that "P2(.sv, t) = TRUE, and demonstrate
on a clause by clause basis that if equations 1 and 3 are satisfied, then some input signal
s,,/ for the component that s, corresponds to must also change value an infinite number of
times during [-o, t].

Functional Elements
For functional elements, we show that if all input signals change value only a finite

number of times during [-oo, t], then s,, can changed values only a finite number of times
during [-oo, t]. This is sufficient for showing causality, since it implies that if s', changes
value an infinite number of times during the interval [-oo, tj, then some input signal must
also.

If all input signals for v change value only a finite number of times during [-00, t], then
there exists a partition 7r of [-o, t] that partitions 1-oo, t] into a finite number of intervals,
where all input signals, for the component that e,, corresponds to, are constant during each
interval. This is an obvious consequence of the fact there are only a finite number of inputs
to any 'functional element, and therefore only a finite total number of value transitions,
across all input signals.

It is now easy to see that a finite number of value transitions for all inputs during [-00, t]
must imply that s, cannot change value an infinite number of times during [-oo, t]. Given
the existence of the partition ir, an infinite number of value transition of s' would imply
that 3,, must change value an infinite number of times during some interval [t., t')I where
all inputs are constant during Kt., t.e. It is obvious from equation 1, however, that the
only value change that 9,, can under go, during any interval over which all its inputs are
constant, is from I to some valid value, and consequently, that s, can change value at
most once during [t., t.

Latches
The argument for level-sensitive latches is identical to that for functional elements,

except that we use the clock signal 0 to isolate a finite interval during which s,, must
change value an infinite number of times.

Since G is strictly clocked, and therefore statically clocked and initialized, 0 can change
value at most a finite number of times during [-00, t]. To see this, consider the following.
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Since G is statically initialized, there must exist a time t,, not equal to -oo, such that
4 is constant over the interval [-oo, to.,t]. Consequently, all transitions in the value of
4, must occur during the interval [t° ,t,t]. Since tt,t is not equal to -oo, however, the
locally finite property of 4 guarantees that 4, cannot change more that a finite number of
times during [t.,t, t].

Just as for functional elements, it is now easy to see that a finite number of value
transitions of the input signal of the latch si,, during [-oo, t), implies that s, cannot change
value an infinite number of times during [-o0, t]. An infinite number of value transition of
s, would imply that ,. must change value an infinite number of times during some interval

K t-, ,e), where 4 is constant during Kt., tel. Observe, however, that if 4 is Low over Kt., te,
then by lemma 3.1 s,, cannot change value at all during Kt-,t4). Alternately, if 4 is HIGH,
a, must equal s, over Kt., tel, and s,, cannot change values an infinite number of times
during Kt., tell since j,,, is assumed to change value only a finite number of times during
Kt., t4j. Finally, if 4 is I over [t., tell lemma 3.5 implies that s,, can change value at most
once during Kt., t.]. Since HIGH, Low and I are the only possible values for 0, we can
conclude that a finite number of value transitions of s,,, during [-oo, t], must imply that
3, cannot change value an infinite number of times during [-oo, t].

The predicate "P2 can be shown to be latchable with an argument completely analogous
to that used for 'P1. First, we let s, be the output signal of some latch whose clock signal
is Low at time t. To prove that if P2(s,,, T) = FALSE over some interval ft', t) then
*P2(3,,,t) = FALSE, we show that if 'P2(s,,,T) = FALSE over [t',t) does not imply that
P2(as,, t) = FALSE, then there must exist an open interval [t,, t) such that the configuration
of the circuit is constant over ft., t), and a, changes value an infinite number of times during
[t, t). The existence of such a interval will be shown to be a contradiction, since such an
interval is not possible for any value of 0 over ft., t). The proof that, if "P2(s,,, T) = TRUE
over (t, t'] then P2 (S,q,, t) = TRUE, is completely symmetrical.

Let S, be the output signal of some latch whose clock signal is Low at time t, and
assume that "P2(s,, T) = FALSE over [t',t) but *P2(s,,,t) = TRUE. Since P2(s,,,T) is not
TRUE for any time T less than t, but is TRUE for t, a, must change value an infinite
number of times during the interval (t", t), where t" is any time in [t', t). Consequently, by
repeating the reasoning from the proof of lemma 5.2, we know that there must exist some
t, less than t, such that the configuration of the circuit is constant over [t., t), and a, must
change value an infinite number of times during the interval [t., t). We can show, however,
that such a t, cannot exist for any value of 0 over the interval ft., t).

It is easy to show that 4 cannot equal Low, HIGH or I, over [to, t). If 4 is Low
over ft., t), then a,, cannot change value an infinite number of times during It., t), since by
lemma 3.1 .s,, cannot change value at all during It., t). Alternately, 4 cannot be HIGH over
[to, t), since the assumption that 4 equals Low at time t would then imply that 4, was not
a digital clock signal. Finally, If 4 is I over ft., t), then a. cannot change value an infinite
number of times during ft., t), since by lemma 3.5 .,, can change value at most once during
ft.,t).

The proof that if P2(8,,, T) = TRUE over (t, t'] then P 2( a, t) = TRUE, is symmetrical,
except that we establish the existence of a t, greater than t, such that the configuration of
the circuit is constant over (t, t.) and a,, changes value an infinite number of times during
(t, t,]. By the exact same arguments, such a t, cannot exist for any value of 4 over the
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interval (t, t,]. I
The next step in showing that our model is well formed, is to establish the existence of

legal computations on static synchronous circuits. Until now, our results have only stated
that legal computations must have certain properties, and consequently have little content
if no legal computations exist. Lemma 6.3 establishes the significance of our previous
lemmas and theorems, by showing that legal computations exist for any strictly clocked
circuit.

The proof of lemma 6.3 represents two significant departures from the methods used to
show lemmas 6.1 and 6.2. First, the proof does not assume the existence of a given static
set of signals, since by showing the existence of legal computations, the lemma effectively
provides the static mappings that previously have been assumed. Second, the proof is
basically constructive in nature.

Theorem 5.1 and computational predicates would seem to be of limited use when trying
to show the existence of legal computations, since it is not possible to attribute the violation
of legality to a single component. The difficulty is that in general, it is always possible to
satisfy equations 1 and 3 for a particular component by violating equations 1 and 3 for
some other component. Consequently, predicates on signal-time pairs would not seem to
incorporate insufa-cient information to conclude whether there exists a computation that
can satisfy equations 1 and 3 for all components simultaneously. Surprisingly, we can still
formulate the property as a computational predicate.

Lemma 6.3 For any strictly clocked circuit G = (V, E), there exists for any set of initial
conditions Z a computation C that satisfies LEGAL for all time t.

Proof: The lemma obviously holds, if we can show that no signal-time pairs satisfy the
predicate P3, where:

Predicate. P3(s,,, t) is TRUE, if there exists no computation on G that satisfies
LEGAL over [-oo, t], where the signals in the computation equal the elements
of Z at time -oc, and FALSE otherwise.

Thus, we can prove the lemma by showing that P 3 is computational, and invoking theo-
rem 5.1. Observe that since 9,, is not considered in the statement of P3 , it is essentially a
dummy variable, that does not necessarily have any association with G. It is not surprising
that s is ignored, since we are proving a property that is intrinsic to the circuit G, and
not to any particular computation on G.

The predicate P 3 is clearly fully defined, monotone and uninitial, and is easily shown
to be causal. To see that P 3 is causal, observe that P 3 is not dependent on the signal that
it is applied to, and consequently must be TRUE at time t either for any arbitrary signal or
no signals. While P3 is not "causal" in the intuitive sense of the terrh, the predicate does
satisfy the formal definition of causal from section 5.

The most involved part of showing P 3 to be computational, is demonstrating that it
is latchable. The difficulty resides in the fact that P 3 is not dependent on the component
it is applied to. This fact implies that showing latchability is essentially showing that if v
is the any component in V, then P3(s,, T) = TRUE over some interval (t, t'] must imply
that P3(.s,, t) = TRUE, and P3(s,, T) = FALSE over some interval ft', t) must imply that
"P3(s,,, t) = FALSE. This property is much stronger than normal latchability, which applies
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only to latches with Low clock inputs. The strength of this property, raises the question of
whether using the concept of a computational predicate for this proof is merely a notational
contrivance. Observe, however, that by using a computational predicate, we are able to
easily determine a precise way to prove a lemma that is difficult to attack intuitively.

To show that for any signal s, P3(s,, T) = TRUE over (t, t'] implies 'P3(s , t) = TRUE,
the strategy is to let P3(s,, T) = TRUE over (t, tl, assume that P 3(s, t) = FALSE, and show
a contradiction. The fact that P 3(s,, t) = FALSE implies that there exists a computation
C that satisfies LEGAL over (-oo, t]. We use this computation to construct a computation
C', that satisfies LEGAL over the interval [-oo, t'], where t' is strictly greater than t. The
existence of C' is a direct contradiction to the assertion that A 3(si, T) = TRUE over (t, t'],
and consequently, we can conclude that 'P3(s,,,t) = TRUE, when 'P3(s,,T) = TRUE over
(t, t'].

The only nontrivial step in showing that for any signal s,, P3 (.g,, T) = TRUE over (t, t']
implies P3(s,, t) = TRUE, is using the implied computation C to construct a suitable C'.
The construction is done inductively, based on the configuration of G over an interval (t, t4.
Using an argument similar to the one in the proof for lemma 5.2, we know that there must
exist a t, strictly greater than t, such that the configuration of G is constant over (t, t'j.

Now, since G is strictly clocked, and therefore synchronous, C' can be constructed if we
can show two facts. First, we need to show that from C we can construct a C' that is legal
over [-oo, t], and signals in C' that are output signals of latches whose clock signals are
Low over (t, t,] satisfy LEGAL over (t, t.]. Second, we need to show that for any component
v, if there exists a computation that is legal over [-oo, t], and whose signals satisfy LEGAL
over (t, t,], for all components with paths to v in the configuration of G during (t, t,], then
we can construct a C' that also satisfies LEGAL for v over (t, t.]. If we can show these two
facts, it is clear that we can construct a suitable C' by inducting over the configuration GT
of G during (t, t.), since V contains only a finite number of components and Gy must be
acyclic.

It is easy to see that we can construct a C', that is legal over [-oo, t], where signals in
C' that are output signals of latches whose clock signals are Low over (t, t.] satisfy LEGAL
over (t, tel. Consider the following. Since G is strictly clocked, and therefore statically
clocked, all clock signals must be digital. Consequently, clock signals that are Low over
(t, t,] must be Low over [t, t,]. Examining equation 3, however, we see that the LEGAL
constraints for latches whose clock signals are Low over (t, t.] are therefore invariant over
the closed interval [t, tej. Consequently, since the computation C provides output signal
values that satisfy at time t the LEGAL constraints for all components, we can construct C!
by making the output signals of latches, whose clock signals are Low over (t, t,], constant
with these values over (t, t.].

Now, if there exists a computation that is legal over [-oo, t], whose output signals for
components with paths in GT to a component v, satisfy LEGAL for the components over
(t, t,], it is easy to see that we can construct a C' such that LEGAL for v is also satisfied over
(t, t.]. Simply observe that if all input signals to a component are known over [-0o, t.] and
the value of the output signal is known over [-oc, t], equations I and 3 effectively specify
values for the output signal that satisfy LEGAL for the component over (t, t]. Since each
signal in C' needs to satisfy the output signal constraint of only a single component, this
last point effectively concludes the proof that for any signal s,,, "P3(s,, T) = TRUE over
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(t, t'] implies P3(s,, t) = TRUE.
Using a similar argument, we can show that for any signal s,,, P3(8,,, T) = FALSE over

[t', t) implies that P3(s,,, t) = FALSE. Consider the following. If P3 (,,,, T) = FALSE over
some interval [t', t), then there must exist a computation C, that satisfies LEGAL for all
time in [-oo, t). It is easy to show that the values of the signals in C can be used to
construct a computation C' that satisfies LEGAL over [-00,t]. The existence of C' by
definition implies that 'P3(s ,t) = FALSE.

The construction for C' when P3(s,,, T) = FALSE over some interval [t', t) is essentially
identical to the above one used when *P3(s,,, T) = TRUE over some interval (t, tel. The only
difference to note is that, given C over [-oo, t), equation 3 specifies a value at time t that
satisfies LEGAL for latches whose clock signals are Low at time t. I

We can now easily show that strictly clocked circuits are well formed. Theorem 6.1
essentially combines the results of lemmas 6.1 and 6.2, and notes that the proof of lemma 6.3
can easily be used to show the stronger result of uniqueness.

Theorem 6.1 For any strictly clocked circuit G = (V, E), there ezists for any set of initial
conditions Z a unique digital computation C, that satisfies LEGAL for all time t.

Proof: If Z is a set of initial conditions for some strictly clocked circuit G = (V, E), then
by lemma 6.3, we know that a legal computation C must exist for Z. In addition, by
lemmas 6.1 and 6.2 we know that all signals in C must be digital signals.

We can show that C is unique, by repeating the proof for lemma 6.3 with the following
slightly modified computational predicate P4.

Predicate. P4 (s,,, t) is TRUE, if there exists a legal computation for Z on G,
that is not equal to C for some time in [-oo, tI, and FALSE otherwise.

I
Theorem 6.1 is the main result of this section and to a large extent the entire thesis.

The theorem essentially states that our models for digital components and digital signals
are self consistent, when combined to form strictly clocked circuits. When combined with
the lemmas from section 3, the theorem also states that strictly clocked circuits exhibit
behavior that matches many of our intuitive notions for the behavior of electrical circuits. In
addition, the theorem provides an indication of the generality of computational predicates,
since each property that is nee(' by the theorem can be cast as a computational predicate.

7 Conclusion

While the ultimate purpose of any model is to provide a basis for analysis algorithms, it is
important that a model be examined in its own right, so that algorithms based on it can
be verified for correctness and bounded in running time.

Due to a de-emphasis on formal properties, traditional models for level-clocked circuits
have lacked the kinds of rigorous notions, algebras and bounds that have been developed
for circuits utilizing edge-triggered latches[9, 11]. Indeed, the rigorous treatments of edge-
triggered have, to some extent, actually hindered the development of formal models for
level-clocked circuits, by encouraging the assumption that modeling digital circuits is a
"solved" problem. In fact, however, while level-clocked circuits can be designed to mimic
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the behavior of edge-triggered latches, the behavior of level-clocked circuits is fundamen-
tally different, and must be modeled in its own right if any accurate analysis of level-clocked
circuits is to be performed.

This thesis has presented the background for a formal model for level-clocked circuitry.
The model has been formulated explicitly to support mathematically precise manipulation,
while maintaining the ability to accurately map electrical signals. The model incorporates
low level features, such as the "undefined" values that electrical signals take on when they
change between valid logic levels, and high level features, such as the proof techniques
based on computational predicates.
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